Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.666
Filtrar
1.
BMC Vet Res ; 20(1): 134, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570774

RESUMO

BACKGROUND: Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS: In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS: Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Coronavirus/genética , Quercetina/farmacologia , Quercetina/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Doenças dos Suínos/tratamento farmacológico
2.
Nitric Oxide ; 147: 26-41, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38614230

RESUMO

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.

3.
Bioorg Chem ; 147: 107353, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38615475

RESUMO

Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.

4.
Antiviral Res ; 226: 105881, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604448

RESUMO

Spring viremia of carp virus (SVCV), as a high pathogenicity pathogen, has seriously restricts the healthy and sustainable development of cyprinid farming industry. In this study, we selected 5-Fluorouracil (5-Fu) as the drug model based on zeolitic imidazolate framework-8 (ZIF-8) to construct a drug delivery system (5-Fu@ZIF-8), and the anti-SVCV activity was detected in vitro and in vivo. The results showed 5-Fu@ZIF-8 was uniform cubic particle with truncated angle and smooth surface, and the particle size was 90 nm. The anti-SVCV activity in vitro results showed that the highest inhibition rate of 5-Fu was 77.93% at 40 mg/L and the inhibitory concentration at half-maximal activity (IC50) was 20.86 mg/L. For 5-Fu@ZIF-8, the highest inhibition rate was 91.36% at 16 mg/L, and the IC50 value was 5.85 mg/L. In addition, the cell viability was increased by 18.1% after 5-Fu treatment. Similarly, after 5-Fu@ZIF-8 treatment, the cell viability increased by 27.3%. Correspondingly, in vivo experimental results showed the viral loads reduced by 18.1% on the days 7 and the survival rate increased to 19.4% at 80 mg/L after 5-Fu treatment. For 5-Fu@ZIF-8, the viral loads reduced by 41.2% and the survival rate increased to 54.8%. Mechanistically, 5-Fu inhibits viral replication by regulating p53 expression and promoting early apoptosis in infected cells. All results indicated that 5-Fu@ZIF-8 improved the anti-SVCV activity; it may be a potential strategy to construct a drug-loaded system with ZIF-8 as a carrier for the prevention and treatment of aquatic diseases.

5.
Fish Shellfish Immunol ; 149: 109553, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615704

RESUMO

Viral diseases have caused great economic losses to the aquaculture industry. However, there are currently no specific drugs to treat these diseases. Herein, we utilized Siniperca chuatsi as an experimental model, and successfully extracted two tissue factor pathway inhibitors (TFPIs) that were highly distributed in different tissues. We then designed four novel peptides based on the TFPIs, named TS20, TS25, TS16, and TS30. Among them, TS25 and TS30 showed good biosafety and high antiviral activity. Further studies showed that TS25 and TS30 exerted their antiviral functions by preventing viruses from invading Chinese perch brain (CPB) cells and disrupting Siniperca chuatsi rhabdovirus (SCRV)/Siniperca chuatsi ranairidovirus (SCRIV) viral structures. Additionally, compared with the control group, TS25 and TS30 could significantly reduce the mortality of Siniperca chuatsi, the relative protection rates of TS25 against SCRV and SCRIV were 71.25 % and 53.85 % respectively, and the relative protection rate of TS30 against SCRIV was 69.23 %, indicating that they also had significant antiviral activity in vivo. This study provided an approach for designing peptides with biosafety and antiviral activity based on host proteins, which had potential applications in the prevention and treatment of viral diseases.

6.
Microb Cell Fact ; 23(1): 117, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644470

RESUMO

Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.


Assuntos
Antivirais , Cianobactérias , Polissacarídeos Bacterianos , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Cianobactérias/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/biossíntese , Animais , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Chlorocebus aethiops
7.
World J Gastroenterol ; 30(13): 1911-1925, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659485

RESUMO

BACKGROUND: Liuweiwuling Tablet (LWWL) is a Chinese patent medicine approved for the treatment of chronic inflammation caused by hepatitis B virus (HBV) infection. Previous studies have indicated an anti-HBV effect of LWWL, specifically in terms of antigen inhibition, but the underlying mechanism remains unclear. AIM: To investigate the potential mechanism of action of LWWL against HBV. METHODS: In vitro experiments utilized three HBV-replicating and three non-HBV-replicating cell lines. The in vivo experiment involved a hydrodynamic injection-mediated mouse model with HBV replication. Transcriptomics and metabolomics were used to investigate the underlying mechanisms of action of LWWL. RESULTS: In HepG2.1403F cells, LWWL (0.8 mg/mL) exhibited inhibitory effects on HBV DNA, hepatitis B surface antigen and pregenomic RNA (pgRNA) at rates of 51.36%, 24.74% and 50.74%, respectively. The inhibition rates of LWWL (0.8 mg/mL) on pgRNA/covalently closed circular DNA in HepG2.1403F, HepG2.2.15 and HepG2.A64 cells were 47.78%, 39.51% and 46.74%, respectively. Integration of transcriptomics and metabolomics showed that the anti-HBV effect of LWWL was primarily linked to pathways related to apoptosis (PI3K-AKT, CASP8-CASP3 and P53 pathways). Apoptosis flow analysis revealed that the apoptosis rate in the LWWL-treated group was significantly higher than in the control group (CG) among HBV-replicating cell lines, including HepG2.2.15 (2.92% ± 1.01% vs 6.68% ± 2.04%, P < 0.05), HepG2.A64 (4.89% ± 1.28% vs 8.52% ± 0.50%, P < 0.05) and HepG2.1403F (3.76% ± 1.40% vs 7.57% ± 1.35%, P < 0.05) (CG vs LWWL-treated group). However, there were no significant differences in apoptosis rates between the non-HBV-replicating HepG2 cells (5.04% ± 0.74% vs 5.51% ± 1.57%, P > 0.05), L02 cells (5.49% ± 0.80% vs 5.48% ± 1.01%, P > 0.05) and LX2 cells (6.29% ± 1.54% vs 6.29% ± 0.88%, P > 0.05). TUNEL staining revealed a significantly higher apoptosis rate in the LWWL-treated group than in the CG in the HBV-replicating mouse model, while no noticeable difference in apoptosis rates between the two groups was observed in the non-HBV-replicating mouse model. CONCLUSION: Preliminary results suggest that LWWL exerts a potent inhibitory effect on wild-type and drug-resistant HBV, potentially involving selective regulation of apoptosis. These findings offer novel insights into the anti-HBV activities of LWWL and present a novel mechanism for the development of anti-HBV medications.


Assuntos
Antivirais , Apoptose , DNA Viral , Medicamentos de Ervas Chinesas , Vírus da Hepatite B , Comprimidos , Replicação Viral , Apoptose/efeitos dos fármacos , Animais , Humanos , Vírus da Hepatite B/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Células Hep G2 , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Modelos Animais de Doenças , Antígenos de Superfície da Hepatite B/metabolismo , Masculino , Hepatite B/tratamento farmacológico , Hepatite B/virologia , RNA Viral/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/virologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-38634132

RESUMO

Coronavirus disease 2019 (COVID-19) induces respiratory dysfunction as well as kidney injury. Although the kidney is considered a target organ of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and affected by COVID-19-induced cytokine storm, the mechanisms of renal reaction in SARS-CoV-2 infection are unknown. In this study, a murine COVID-19 model was induced by nasal infection with mouse-adapted SARS-CoV-2 (MA10). MA10 infection induced body weight loss along with lung inflammation in mice four days after infection. Serum creatinine levels and the urinary albumin/creatinine ratio increased on day 4 after MA10 infection. Measurement of the urinary neutrophil gelatinase-associated lipocalin/creatinine ratio and hematoxylin and eosin staining revealed tubular damage in MA10-infected murine kidneys, indicating kidney injury in the murine COVID-19 model. Interferon (IFN)-γ and interleukin-6 upregulation in the sera of MA10-infected mice, along with the absence of MA10 in the kidneys, implied that the kidneys were affected by the MA10 infection-induced cytokine storm rather than by direct MA10 infection of the kidneys. RNA-sequencing analysis revealed that antiviral genes, such as the IFN/Janus kinase (JAK) pathway, were upregulated in MA10-infected kidneys. Upon administration of the JAK inhibitor baricitinib on days 1-3 after MA10 infection, an antiviral pathway was suppressed, and MA10 was detected more frequently in the kidneys. Notably, JAK inhibition upregulated the hypoxia response and exaggerated kidney injury. These results suggest that endogenous antiviral activity protects against SARS-CoV-2-induced kidney injury in the early phase of infection, providing valuable insights into the pathogenesis of COVID-19-associated nephropathy.

9.
Viruses ; 16(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543718

RESUMO

Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.


Assuntos
Desoxiadenosinas , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Chlorocebus aethiops , Lactente , Criança , Humanos , Pré-Escolar , Enterovirus Humano A/genética , Células Vero , Adenosina/farmacologia , Células CACO-2 , Replicação Viral , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais , Antivirais/farmacologia
10.
Fish Shellfish Immunol ; 148: 109519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508540

RESUMO

Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1ß, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Poxviridae , Animais , Carpas/genética , Edema , Interferons , Antivirais/farmacologia
11.
Bioorg Chem ; 146: 107322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555797

RESUMO

Porcine Delta Coronavirus (PDCoV) infection can induce serious dehydration, diarrhea and even death of piglets, which has caused huge losses to the breeding industry. PDCoV has been reported to have the potential for cross species transmission, and even reports of infecting humans have emerged. At present, there are still no effective prevention and control measures for PDCoV. In this study, we have designed and synthesized a series of unreported Dihydropteridone derivatives. All of these compounds were evaluated for the against PDCoV in vivo and in vitro for the first time. In this study, antiviral activity (17.34 ± 7.20 µM) and low cytotoxicity (>800 µM) was found in compound W8. Compound W8 exerts antiviral effect on PDCoV by inhibiting cell apoptosis and inflammatory factors caused by virus infection in vitro. In addition, lung and small intestinal lesions caused by PDCoV infection in mice could be significantly reduced by compound W8. These findings highlight the potential of compound W8 as a valuable therapeutic option against PDCoV infection, and lay a foundation for further research and development in this field.


Assuntos
Infecções por Coronavirus , Coronavirus , Sulfonamidas , Suínos , Animais , Humanos , Camundongos , Intestino Delgado , Antivirais/farmacologia
12.
Biotechnol J ; 19(3): e2300552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528347

RESUMO

Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Receptores Fc , Humanos , Anticorpos Monoclonais/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Polissacarídeos , Receptores Fc/genética , Engenharia de Proteínas/métodos , Plantas/genética , Plantas/metabolismo
13.
J Agric Food Chem ; 72(13): 6979-6987, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520352

RESUMO

Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 µg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 µg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.


Assuntos
Potyvirus , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Indóis/farmacologia , Desenho de Fármacos
14.
Microb Pathog ; 190: 106628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508422

RESUMO

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Assuntos
Neuraminidase , Infecções por Rotavirus , Rotavirus , Replicação Viral , Animais , Neuraminidase/metabolismo , Neuraminidase/genética , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Suínos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/virologia , Células Epiteliais/microbiologia , Ligação Viral/efeitos dos fármacos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Antivirais/farmacologia , Haplorrinos , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia
15.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543103

RESUMO

Herein, the prospective applications of green fabricated silver nanoparticles (Ag-NPs) within the biomedical field were investigated. The leaf aqueous extract of Portulaca oleracea L., a safe, cheap, and green method, was used to fabricate Ag-NPs. The maximum plasmon resonance of synthesized NPs has appeared at 420 nm. The various biomolecules present in the plant extract to assemble spherical Ag-NPs with sizes of 5-40 nm were analyzed using Fourier transform infrared and transmission electron microscopy. The Ag was the major content of the formed Ag-NPs with an atomic percent of 54.95% and weight percent of 65.86%, as indicated by EDX. The crystallographic structure of synthesized NPs was confirmed by the diffraction of the X-ray. The dynamic light scattering exhibits the homogeneity and mono-dispersity nature with a polydispersity index of 0.37 in the colloidal fluid and a zeta potential value of -36 mV. The synthesized Ag-NPs exhibited promising antimicrobial efficacy toward various prokaryotic and eukaryotic pathogenic microorganisms with low MIC values of 12.5 µg mL-1 and 6.25 µg mL-1, respectively. Additionally, the P. oleracea-formed Ag-NPs showed optimistic antioxidant activity assessed by DPPH and H2O2 assay methods with the highest scavenging percentages of 88.5 ± 2.3% and 76.5 ± 1.7%, respectively, at a concentration of 200 µg mL-1. Finally, the biosynthesized Ag-NPs showed high antiviral properties toward the hepatitis A virus and Cox-B4 with inhibition percentages of 79.16 ± 0.5% and 73.59 ± 0.8%, respectively. Overall, additional research is essential to explore the Ag-NP-based aqueous extract of P. oleracea for human health. In the current investigation the use of synthesized Ag-NPs as antimicrobial, antioxidant, and antiviral agents to protect against pathogenic microbes, degenerative diseases caused by various oxidative stresses, and deadly viruses is recommended.

16.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543184

RESUMO

Lactoferrins and lactoferrin-derived peptides display numerous functions linked to innate immunity in mammalians, spanning from antimicrobial to anti-inflammatory and immunomodulatory actions, and even demonstrate antitumor properties. To date, the proposed mechanisms for their biological actions are varied, although the molecular basis that governs lactoferrin interactions with molecular targets has been clarified only in a limited number of specific cases. However, key in silico methods have recently moved the topic to the fore, thus greatly expanding the possibilities of large-scale investigations on macromolecular interactions involving lactoferrins and their molecular targets. This review aims to summarize the current knowledge on the structural determinants that drive lactoferrin recognition of molecular targets, with primary focus on the mechanisms of activity against bacteria and viruses. The understanding of the structural details of lactoferrins' interaction with their molecular partners is in fact a crucial goal for the development of novel pharmaceutical products.

17.
Heliyon ; 10(6): e28225, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545135

RESUMO

Geckos and their products have been used in Asian traditional medicine. Medicinal properties of desert-dwelling Gecko species, Crossobamon orientalis remain unexplored. In this study, natural bioactive macromolecules present in oil extracted from C. orientalis (COO) and their biological activities were evaluated. Chemical constitution of COO was explored by using gas chromatography mass spectrometry. Antioxidant, antiviral, and antibacterial activities of COO extracts were assessed using various assays, including DPPH free-radical-protocol, HET-CAM method, in ovo-antiviral technique, and disc-diffusion method. GC-MS study reported 40 different compounds in COO. n-hexane and methanol extracts of COO demonstrated highest DPPH radical inhibition, with values of 70 and 63.3%, respectively. Extracts of COO in solvents, namely 1-butanol, methanol, diethyl ether, and n-hexane significantly inhibited the proliferation of four pathogenic viruses. Maximum zone of inhibition was observed for Escherichia coli (13.65 ± 0.57 mm). These findings suggest that COO possesses potent antioxidant and antimicrobial properties against viral and bacterial strains, thanks to its biologically active components having no side effects. Further studies are essential to isolate and identify individual bioactive compounds present in COO and to investigate their potential as therapeutic agents.

18.
Heliyon ; 10(6): e28351, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545179

RESUMO

Canine coronavirus (CCoV) can produce a self-limited enteric disease in dogs but, because of notable biological plasticity of coronaviruses (CoVs), numerous mutations as well as recombination events happen leading to the emergence of variants often more dangerous for both animals and humans. Indeed, the emergence of new canine-feline recombinant alphacoronaviruses, recently isolated from humans, highlight the cross-species transmission potential of CoVs. Consequently, new effective antiviral agents are required to treat CoV infections. Among the candidates for the development of drugs against CoVs infection, fungal secondary metabolites (SMs) represent an important source to investigate. Herein, antiviral ability of 6-pentyl-α-pyrone (6 PP), a SM obtained by Trichoderma atroviride, was assessed against CCoV. During in vitro infection, nontoxic concentration of 6 PP significantly increased cell viability, reduced morphological signs of cell death, and inhibited viral replication of CCoV. In addition, we found a noticeable lessening in the expression of aryl hydrocarbon receptor (AhR), a strategic modulator of CoVs infection. Overall, due to the variety of their chemical and biological properties, fungal SMs can decrease the replication of CoVs, thus identifying a suitable in vitro model to screen for potential drugs against CoVs, using a reference strain of CCoV (S/378), non-pathogenic for humans.

19.
Int J Biol Macromol ; 265(Pt 1): 130749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467218

RESUMO

The aim of this study was to investigate the physicochemical characteristics of nanoparticles formed by the ionic gelation method between chitosan and water-soluble fraction of Persian gum (WPG) for encapsulation of Nigella sativa extract (NSE) as an antiviral agent. Our findings revealed that the particle size, polydispersity index (PDI), and zeta potential of the particles were in the range of 316.7-476.6 nm, 0.259-0.466, and 37.0-58.1 mV, respectively. The amounts of chitosan and WPG as the wall material and the NSE as the core had a considerable impact on the nanoparticle properties. The proper samples were detected at 1:1 chitosan:WPG mixing ratio (MR) and NSE concentration of 6.25 mg/mL. Fourier-transformed infrared (FTIR) spectroscopy proved the interactions between the two biopolymers. The effect of NSE on infectious bronchitis virus (IBV) known as avian coronavirus, was performed by the in-ovo method determining remarkable antiviral activity of NSE (25 mg/mL) and its enhancement through encapsulation in the nanoparticles. These nanoparticles containing NSE could have a promising capability for application in both poultry industry and human medicine as an antiviral product.


Assuntos
Quitosana , Gammacoronavirus , Nanopartículas , Nigella sativa , Humanos , Quitosana/química , Nanopartículas/química , Antivirais/farmacologia , Tamanho da Partícula
20.
Curr Pharm Des ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482627

RESUMO

The discussion has revolved around the derivatives of amino acids and peptides containing carbocycles and their potential antiviral activity in vitro against influenza A, hepatitis C viruses, and coronavirus. Studies conducted on cell cultures reveal that aminoadamantane amino acid derivatives exhibit the capacity to hinder the replication of viruses containing viroporins. Furthermore, certain compounds demonstrate potent virucidal activity with respect to influenza A/H5N1 and hepatitis C virus particles. A conceptual framework for viroporin inhibitors has been introduced, incorporating carbocyclic motifs as membranotropic carriers in the structure, alongside a functional segment comprised of amino acids and peptides. These components correspond to the interaction with the inner surface of the channel's pore or another target protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...